
UDC 5339538.4 

SIMPLE WAVES AND STlUBG XSCONTlHUITIES 
IN A MAGNETIZABLE b4EIXUM 

PMM, vol. 43, No. 1, 1979, pp. 57-64 

N.F. PATSEGON, R. V. FOLOVIN, and I. E. TARAPOV 

(Khar’kov) 

(Received January 9, 1978) 

It is shown that in a compressible conducting medium magnetixable according 
to an arbitrary isotropic law p = P(P, T, H) (u and P are the magnetic perm- 
eability and density of the medium, T is the temperature, and H is the 
magnetic field intensity) exist simple waves of the same type as in a nonmag- 
netic medium. A plane polarized simple magnetohydrodynamic wave exists 
in a magnetizable incompressible fluid in addition to entropy and Alfv& waves. 
Equations of Alfvin simple waves are integrated. 

Dlscontinuities in a magnetizable medium are classified. In the case of a 
conductfve medium the system of conditions at discontinuities, except rotat- 
ional and plane polarized ones, admit nonpolarized discontinuities with chaa- 
ge of thermodynamic parameters and of the magneUc induction vector (as to 
magnitude and direction). It is shown that in a nonconducting comprereible 
medium magnetizable in ccnformity with the law p = P (B) the shock wav- 
es are gasdynamic. 

I,. The propagauon of one-dimensional perturbations in a nonuniformly and iso- 
tropically magnetizable conduction medium is defined by the system of equations 

?,!$ + au, 0 (1.1) 
xik x = 

whereui = p’, u2 = s’, ~3 = v,‘, u4 = uy’, us = vzr, u6 = B,‘and 247 = B,‘; 
p’, s’, . . . are perturbatiars of magnetohydrodynamic variables. 

Let us, first, consider a compressible medium whcse equations of state in the abren- 
ce of an electromagneUc field are of the form 

T = T (P, s), P = P (P, 4 

The nomew elements of matrix {zfk} for this case appear in (11. 
S-king the solution of system (1.1) in the form of plane WaYes Uf = ut’ exP i* 

(kx - at), we obtain for the determination of phase velocities h = o I k the d&m 
persion equation 

h det (X,A + X6B - h2E) = 0 
(1.2) 

x3i 5,i+1 

xi = I rtqi h,i+1 

x6i 5,i+1 

I1 A =//:2,:2,:2ji’ ’ =I; -:_o,j 
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where il = 0 is a simple root of Eq, (I, 2) that determtnea the entropy wave. and 
E is a unit matrilr, It can be &own that fer il” = 3,” i (4%&+) the &W rows of 
the determinant in the left-hand side of this equation arc proportional for any arbitrary 
magnetization kw of the form p = p (p, T, H). Hence the Alfvdn velocity satis- 
fies the moat general disperatonequationfor magnetizable compressible media. 

The rem&in&g phase velocfties are determined by the blqnadratic equation 

xp - 2@%s -j- c, = 0 <z31 

% = P% -!- lczs+4, -I- 4% 4- Bzx37 + ~24x42 -f- ~2!4%2 -t 

m&2 (p2 i- p&Y I B) 

~o~e~en~y~ as in the case of a ~~~~~~~c medium (jk = con@J,~ there are 
seven types of simple waves in a medium that is magnetizable in conformity with an 
arbitrary isotropic law. 

Variation of magnetohydrodynamic variables in a simple wave is defined by the 
following system of nonlinf?trr differential equations EZj : 

ii&s I d&m = i-3 I t-m f1.4 

wftere rk me corners of the r~gbt-hand eigenvectur of matrix (2& After the 
determination of ui as functions of u, using system (I,& the function 1c, (x, t) 
in the case of a simple wave can be obt&ine$ from the equation 

x - n, (I&& tLg, . . ., lay) d = F (u,) (1.5) 

in which ~ncff~~ F is determfned by the input con&tions, 

2. Let us consider the types of one-dlmensiona~ RiemWr waves in a ma~ne~zab~e 
medium, 

When the magnetic field orientation is arbitrary, the right-hand vector far the 
AU&n wave is of the form 

Substituting the variable uu for z& from (1.4) we obtain 

do B, @, ByBx dB, 
.._A,-- 3% 
dz$# B,” duy=*T’ T*-- h 

&&=E2W=V&&=O 

This shows that in an Alfv&~ wave BW2 -F_ &s, p, z;;c, s ( and T) remain unchang- 
ed so that, also, here that wave has a circular polarization, and its longitudinal vel- 
ocity and thermodynamic&l parameters, as well as the magnetic permeability do not 
change, This foftows from the ~gn~~~~ti~ law p = p (PI T, B i tr_) under con- 
dition that it is s&able for &k, i, e, @ -j- ~~23 # 0, which is trsually satisfied. 

Hence it follows from (2.1) that 

Xn this case formula ( 1.5) a.sSumes the form 
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which shows that the simple Alfvin wave propagates without altering its shape. 
Simple magneto-sonic waves have the following phase velocities (see ( 1.3)): 

h* = cr*VG (2.2) 

where the upper sign relates to a fast and the lower to a slow magnetosonic waves, ces- 
pectively. It can be shown that the relations 

(2.3) 

hold for right-hand components of eigenvectors of corresponding magnetceonic waves. 
We now obtain 

(2.4) 

so that BZ I B, = const, v, / vy = const, and u, - uvBz I B, = const. 
Consequently in a magnetizable medium magneto-sonic waves are plane-polarized. 

Setting in (2.4) the constants of integration equal zero, we obtain B, s 0, and v, 5 
0. Hence in Eqs. (1.4) for magneto-sonic wavu it is possible to use for components 

of the right-hand eigenvectors formulas (10) of 135 After same transformationsusing 
(1.3) the equtions of simple magneto-sonic waves can be written in the form 

dv, n, ds NLf 
dp= Q’ 2y 

- (Lo + LI) 4ypaBB,*Bya 
Q t&s - LA%9 

% QnB#$, (4, + U 
dp 5 - Q (I,*% - LomB,g) ’ 

(2.5) 

where 
Lo = pa + I-@,? I B + NT,p2p~smB,a 
Lr= NW NT (sT*T, - TPS -pp(i +sT~TJI 

L* = (h*S -LomB=Y [~TwB~@P+PT~~) - 

IJILT'%= - PW + w'Tp)l 

N = 11 + T J.(~~e- p~%S')]'l 

m = Ww(p2 + pd)l-? .=&-p&fH 

0 

For magneto-sonic waves from formula (1.5) we obtain 

2 - (G =~r Q t = F @) 

Since here V, and A* vary simultaneously with density p, the profile of these 
wavea becomes deformed in time. 

Let us now consider the entropy wave which does not propagate relative to the med- 
ium. For the corresponding components of the right-hand vector in this wave we have 
r7 = (B, I BY) r6. 

Thus such wave is also plane-polarized, and it is possible to select a syrkm of 
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coordinates such that B z nz 0. Using formula (9) of [3] it is possible to write the 
differential equation of the simple entropy wave in the form 

K+ - I&m& (p2 + I.LH&?/& f Q2pp (p2 $ P.HB) mB,3] (2.6) 

K dB, - = - PM&/ [KXPTL - Kz (Ps -I- WJl dP 

v, = con&, 27, = const, I: . _ = const, B,rO 

K = (psi- +TTs)b2 + PH&*/~W&~- ~~wd',(p~ + CLHB)~W 

li-I= PP+%-I- $TT,, 

K2 = PI,+ Ed",, 4 =,&'sEl(p - I- ppp)dH 

0 

Thus for the entropy wave in a magnetizable medium not only variation of entropy 
is characteristic, as in the case of nonmagnetic medium, but also variation of density, 

induction, and temperature. 

3, One-dimensional motions of a magnetizable incompressible (p = con&) 

fluid are defined by five magnetohydrodynamic variables 

u1 = T, us = vyr u3 = v,, u4 = B,, u6 = B, 

In the absence of a field the equation of state of the fluid is taken as T = T (8) 

c41. 
Five types of simple waves exist in an incompressible conducting magnetizable 

fluid. Their phase velocities are determined by the equation 

h (I? - Q) (A2 - &a) = 0 

G,2 = Ax2 
? + f+$ IL2 + PH y + N~2~T2T,m (B,2 + B,z)] 

For the Alfvin wave 3L = =f= A, = f B, /JIG and the corresponding 
right-hand eigen vector is 

r = (0, a&, - AB,, - B,B,, B,B,) 
The differential equations of a simple AlfvEn wave in an incompressible fluid are 

the same as Eqs. (2.1) for an incompressible medium. 

A simple magnetohydrodynamic transverse wave propagates relative to the fluid 

at phase velocity k = zt G,, to which corresponds the right-hand eigen-vector 

with components rr = NPPCT T,mB, (Bi+B:) t r2 = hB,, r3 = Id?,, 

r4 = - B,B, and rB = - B,B,. Thus this wave, unlike the Alfvin wave is 

plane-polarized. Moreover in it V, - vyBz / B, = const. Hence it is possible 

to set v, z 0 and B, s 0. 

The differential equations of the transverse magnetohydrodynamic wave is of the 
form 

dv, 1 dB, = - h / Bx, dT I dB, = - NppTT,mB, 

This system of equations was previously obtained in [5] for a conducting fluid mag- 
netized to saturation. It reduces to quadratics for an arbitrary magnetization law of 
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theform fL=pfH). 
Finally, in a simple entropy wave h = 0 and the coxreapooding right-hand 

eigenvector 

This shows that this wave is also plane-pola&ed, Ita equation can be written as 

4. The above analysis shows that the deformation of simple wave pro&W in a 
compressible medium can only induce the same Mud of strong discontinuities as in non- 
magnetic medium. 

Let us consider the types of p~&?le sotutioos for cooditioos at strong disoontfnuities~ 
taking f&at the conductiq magnetizable medium. The following system of equations 
definiag &mug dfseoatirmiti~~ in such me&urn was obtafac;d in [S]. 

<PM = 0, (pvl%v.x - #M&) = 0 (4.1) 

GWta t P - &I - (kc)-~pH,“) = 0 

(pv,(v’f2+W----_pUp+TUT)+ 

(4ap (v&P - pfY, (VH))) = 0 

where subscripts n and z denote, respectively, the normal and tangent vector com- 
potWIts dative to the di8mWty surf-, an@ed brackets donote jumps of quant- 
ities ia the shock wave, VI’ is the enthalpy of the medium in the absence of a field, 
and the amai&ig notatiou is coovus&ouaL 

System (4.1) generally adroW the foIlowzng types of ~ti~ti~: 
1’. DfscontWuitfes withapt fIow of matter ttimugh the surface (pv, = m, = 0), 
1) contact discotlunuities fix which B, # 0, 
2) trangeutial discoatinuitiea (B, = 0). 
2 ‘; Dfacon%luuitiea with flow of ma& tiuuqh the surface (me # 0) , 
1) nonpolarized dfscmtfrmitira with ~~~ paramcrtep asd W tangantial 

componeuta of magnetic induction and v&c&y vectrrra varying (as to mag@tude and 
direction) when passUg thR%gh these, 

2) rotational discontinuitfes along which t&e magnetic induction is cooWou& and 
the WucMon vector and, generaJ3y, thermodynamic vadables vary, 

3) plane-potprfied shock waves at passage tkough which %rmodyuamiC vtia$lcs 
become discont&xuous, taogeWa1 compoueuts of magnet& inciuct&ou and vrsBoclty vtc- 
tars lie fn one plane and vazy in megMud& 

~scont$n~~ without flow of matter were analyzed in detail in CSI. 
Let ~0 cwmkie~ disconwati with flow of matter thraqh the surface. Zn Sacaae 

system (4.1) may be written fn the form 
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< P (p, T) - p2up + f ( PBn2 
m,,2 - =)> = 0 

< 
!JHT2 

W(P,T)+TUT -u--_up+~+~ ( I- PBn2 
8npm,2 = >> 

0 

(4.2) 

(B,,) = 0, Cm,,) = 0, (B,vr - vnB7) = 0 

< 
B,H* m,v, - - 

4n > = 0 

When B, # 0 it is possible to select the coordinate system so that on both sid- 
es of the discontinuity 

vn & VI = 7 
ll 

From the last of formulas (4.2) we then obtain 

Ir-=, 
< ( - mn2 

P.Bn2 
-4nlL = >> 0 

P 
(4.3) 

The first two of relations (4.2) together with (4.3) make it, thus, posstble to 0th 
ain p2, I’,, and H2 as functions of pr, T,, and HI with c-tams m, and B,. 

Since in nonpolarized jumps vectors F&r and Br2 are neither parallel nor equal 
and PI # Ps , hence, as implied by (4.31, we have 

V,i = yf& (i = 1,2) (4.4) 

and, consequently, the velocity of the medium is the same on both sides of discontin- 
uity and equal to the AlfvGn velocity. For the calculation of such disconttnuities from 
(4.2) and (4.3) we have 

L 
<> 

= 0, 

<T&u 

(p - p%p) = 0 (4.5) 

-Pup + TUT +P~z*/@~P)) = 0 

Such waves do not exist in nonmagnetic medium, since for p = 1 from (4.5) 
we have 

<p> = 0, <P> = -& (HT2>, (W> = -&(HrB) 

which is only possible when (p> = (p) = (W) = 0 and, consequently such wave 
becomes an AU&n discontinuity. 

For rotational jumps (vectors &, and BT2 are of equal magnitude but not parall- 
el and PI # p2 1 from (4.2) we have the relations (4.4) and (4.5) with the addition- 
al condition (B,) = 0. 

A particular case of rotational discontinuities is that of Alfvin discontinuities (vec- 
tors B,, and &, are of equal magnitude but not parallel and PI = Ps) for 
which from (4.4) and (4.5) we obtain 

v,s=v I n22 = Bn2 / (4~~107 (P) = (H) = 0 

If then p is a single-valued function of temperature, which is usually always 
assumed, also <T> = (p> = <W> = 0. 

It will be seen that when p = p (H) and p is a Jingle-valued function of the 
magnetic function (p.” + p&? # 0), then from condition (B> = 0 ’ for rotational 
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wave3 we obtain <p> = 0. It then follows from (4.5) that in such magneKzable 
medium rotational disconKnuities other than the Alfv&n ones are impoaaible. 

Numerical analysis of system (4.5) shows that for a perfect gas magneaable in 
conformity .with the KlPudur - Mosotti law ((/J - 1) T / (pp.) = const) in the 
region of magnetic permeability 1 < f.& < 2 up to the discontinuity and for the 
adiabatic exponent 1 < y < 2 (y = cr.,/ c,) at stable, in the meaning of [3J, state4 
of the medium, only Alfvh dlscouKnuiKes are poadble among rotational and nonpol- 
arized diaconKnuiKes at which entropy doea not decrease. 

It can besimilarly shown that in a POlfdrCt gas magrmKiaed to saturation and const- 
ant rnagnetlzation &!f = (p, - 1) H / (4n) = const them exist soluKiau which 
correspond to nonpolarized diaconKnuiKe$ and sati@ the condition of entropy incmaa4. 
However These solutiorr~ are nonevolnKonary. 

Since for the arbitrary magn4KzUon law p = y (p, T, H) the addition of con- 
dition <B,> = 0 to system (4.5) reduces the numbu of variables that are to be de- 
termtmxl, that caadiKon imposer addiKoaa1 links on parameters m, and Ba = &a 
+ &,=. J&uce a rotaKonal diacouttnuity with a lump of tbezmodynamfc variable 

can ouly exist at rptdflc vahm of the fisld. Th& appsrcaUy, indicates that among 
rotaKoaa1 and naapolrtied diaconKnuiK48 or&y Alk4.n ones can be real&&. 

The que8Ko~1 of extstcact of noqola&ed disco&nuiKu that saKafy ?&e co&iKons 
of entropy increas4, and of medium stability and evolutfon in the case of arbitrary eq- 
uations of state and magnetization laws remains op&n. 

The plane-polarized jump r4pr4a4nt th4 mat general case. The complete system 
(4.21, (4.3) is UIGd fez their ca&xlation. The 4quaKaa of shock adiabat may be used 
in the case of magnetizable media C61. 

The system of cardiKons at strong discoaKnuitler in an incomprrrdblr magu4Ub- 
le conducting fluid admits the same types of dircontinuttitt; rdtaKona1 dlaconKnuities 
can only be of the Alfv& type. When a conducting fluid magn4Kz4s in conformity 
withthelaw p = p (H), then o&y A&&n and plans-polad%d dlscontfwltiea are 
pauible in it. 

Note that because magneto-so& simple waves are plane-polarized and in a simp- 
le Alfv& wave hydrodynamic parameters do not vary, the intensity of nonpolarized 
shock waves can only be finite 181. Such dlscaatinuiKcs may occur, for instance, und- 
er interacKon of other types of discouKnuiKe~ (3. 

5. Tu4r4 are seven types of atmpl~ waves in a nonconductiug magn4Kzable med- 
ium [9] which are plant-polarized. Hence only pWW-polaW &I&C wav4a are Poaa- 
ible irr a noncon&ctlng magnetizable medium. For their determination we have 

the system of equaKous 

(mp> - 0, (m,Yp + p - P% - (W-l W,9 = 0 
(5.1) 

(~~/(2p2)+W----_pup+T~)=0 
(v,> = 0, <Hz) = 0, <&A = 0 

‘) strong dfsconKmr,tKu were a&o consid4r4d in the paptr by V. V. Oogaov, N. L. 
v&*eva, N. G. Taktarov, and G. A. Shapo&nikov, ma- of hydrodyuaaa of 
polar&able and magnetizable multicompoacnt and mulltiphuut m&la. D~w&WI~~S 
~~lutiont. InvertigaKon 0f diacontilgla~ soluKons with a jump of magnetic pemteabil- 
ity. Otchet Inst. Mekhaniki MOU, NO. 1705, 1975. 
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T h e o r e m. Shock waves in a nonconducting medium that magnetizes in con- 
formity with the law M = M (H) degenerate in gasdynamic waves when conditions 

dM/dH>O and dzM/dHz,< 0 @>I) or dM/dH<Oand@M/ 
dH2 s 0 (p < 1) are satisfied. 

These conditions for the law of magnetization are inherent to all known media. 
This law shows that in paramagnetic and diamagnetic materials the following inequal- 
ities are satisfied: 

O>IL&Y (p>Q o<px<q @<I) (5.2) 

When u = p (H) from (5.1) we obtain 

(,rn,) = 0, run2 (1 /(W)j + W> = 0 (5.3) 
H 

(P,+m,,a<l,p)=<~-&~p(H)HdH>=Q, (f&)=0, (W-0 
0 

To prove the theorem we take into account that the law of magnetization lo = 
p (H) = p (f/HZ2 + B,” / p2) by virtue of the last three of conditions (5.3) is an 
implicit equation in u with parameters HT and B, , whose condition of tolvabil- 
ity is 1+ ~HB,, a i (p’ H) # 0. in the class of podthe functions of p , when con- 
dition (5.2) is satisfied, it applies to paramagmetic as well as to diamagnetic materi- 
als. Hence from conditions (5.3) we have <cl) = 0 <Ha> = Bn2 <I / p2> = 0, 
and Q = 0. 

Thus (5.3) reduce to gasdynamic conditions and to conditions for a field which 
does not interact with the medium. Since in the case of media in which magnetizat- 
ion is independent of temperature and the adiabat (a f se> = 0 is the same as in 

gasdynamics (<s> = O), solutions at shock waves (5.3) coincide with those in gas- 
dynamics. 
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