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It is shown that in a compressible conducting medium magnetizable according
to an atbitrary isotropic law p = p(e, T, H) (n and ¢ are the magnetic perm-
eability and density of the medium, I is the temperature, and # is the
magnetic field intensity) exist simple waves of the same type as in a nonmag-
netic medium, A plane polarized simple magnetohydrodynamic wave exists

in a magnetizable incompressible fluid in addition to entropy and Aifvén waves.
Equations of Alfvén simple waves are integrated,

Discontinuities in a magnetizable medium are classified. In the case of a
conductive medium the system of conditions at discontinuities, except rotat-
ional and plane polarized ones, admit nonpolarized discontinuities with chan-
ge of thermodynamic parameters and of the magnetic induction vector (as to
magnitude and direction). It is shown that in a nonconducting compressible
medium magnetizable in conformity with the law p = p (H) the shockwav-
es are gasdynamic,

1. The propagation of one-dimensional perturbations in a nonuniformly and iso-
tropically magnetizable conduction medium is defined by the system of equations

Ou du (1.1)

5 + oy =0

whereu; = p', Uy = s, u3 = v/, uy =0, us = v;’, ug = By'and u; = B,’;
p’, s, ... are perturbations of magnetohydrodynamic variables,

Let us, first, consider a compressible medium whose equations of statein the absen-
ce of an electromagnetic field are of the form

T=TIp,s), =p (0,9

The nonzero elements of matrix {z;,} for this case appear in [1].

Seeking the solution of system (1. 1) in the form of plane waves u; = u® exp i«
(kx — ot), we obtain for the determination of phase velocities A= /% the dis~
persion equation

1.2
A det (X, 4 + XoB — ME) =0 (1.2
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where A == 0 is a simple root of Eq, (1.2) that determines the entropy wave, and
£ is a unit matrix, It can be shown that for A* = B.? / (4npp) the last rows of
the determinant in the left~hand side of this equation are proportional for any arbitrary
magnetization law of the form p = u (p, T, H). Hence the Alfvén velocity satis-
fies the most general dispersionequationfor magnetizable compressible media,

The remaining phase velocities are determined by the bignadratic equation
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Consequently, as in the case of 2 nonmagnetic medium (i = const), there are
seven types of simple waves in a medium that is magnetizable in conformity with an
arbitrary isotropic law.

Variation of magnetohydrodynamic variables in a simple wave is defined by the
following system of nonlinear differential equations [2] :

&3@ 1{ éﬁrm = ¥ ){ 'm (1’4}

where ry are components of the right-hand eigenvector of matrix {Z;x}. After the
determination of u; as functions of u,, using system (1.4), the function 4, (z, f)
in the case of a simple wave can be obtained from the equation

z - }"k (uls Ugy « « =y u'&’) t= F (um) (1. 2

in which function F is determined by the input conditions.

2. Let us consider the types of one-dimensional Riemann waves in a magnetizable
medinm,
When the magnetic field orientation is arbitrary, the right-hand vector for the
Alfvén wave is of the form

r=(0,0,0,AB,, —AB, — B.B,,B.B,), A= -+ B, ;;/ 4t 9!‘-
Substituting the variable vy for iy, from (1. 4) we obtain
&, B, 4B BB dB, B, (2.1)

» B,' &, ~ AB, ' @, 3

dp = ds = dv, =0

This shows that in an Alfvén wave B,® -~ B,%, p, Uy, s (andT) remain unchang-
ed so that, also, here that wave has a circular polarization, and its longitudinal vel-
ocity and thermodynamical parameters, as well as the magnetic permeavility do not
change, This follows from the magnetization law p = u (¢, T, B/ u) under con-
dition that it is solvable for M, i.e, p® -+ pgB % 0, which is usually satisfied.

Hence it follows from (2, 1) that

B B
vy = F ...;.. const U, e s + const
v Vinop R 757

In this case formula (1, 5) assumes the form
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£ — (Ve By | Vinpu) t = F (vy)

which shows that the simple Alfvén wave propagates without altering its shape,
Simple magneto-sonic waves have the following phase velocities (see (1. 3)):

=t V=G .

where the upper sign relates to a fast and the lower to a slow magnetosonic waves, res-
pectively. It can be shown that the relations
r r B, B, (2.3)
2=l +t5 T, x=Te x5 :
By k- 8, + By
hold for right-hand components of eigenvectors of corresponding magnetosonic waves.
We now obtain

aB, e, + B,’ v, Te,x By (2.4)

so that B,/ B, = const, v,/ v, = const, and v, — v, B,/ By = const.
Consequently in 2 magnetizable medium magneto-sonic waves are plane-polarized.
Setting in (2. 4) the constants of integration equal zero, we obtain B, = 0, and v, =
0. Hence in Eqgs. (1.4) for magneto-sonic waves it is possible to use for components
of the right-hand eigenvectors formulas (10) of [3], After some transformations-using
(1.3) the equtions of simple magneto-sonic waves can be written in the form

do, My ds _ NLy—(Lo+ Ly) Nppym?B, 2B 3 (2.5)
o~ o’ dp P (A — LymB )
do,  AymBB,(y+L) dB,  B,(3+LmBY

I T T e —LemBl ' Tdp | p(i—LemBE
where
Lo = p* 4 pgB,?/ B + NT pu*up’mB,?
Ly = Nou {pr (s7°T, — Tp) — o (1 + sr°T,)]
Ly = (Mi® — LomB.?) [prpmB? (pp + prTp) —
pprmBy* — p (sp* + s1°7)]
N = [1 + T, (s7* — pr*mBY)[*

H
- 1
m = o (4 + peB)Y ot = o=\ prtl dH
0

For magneto-sonic waves from formula (1. 5) we obtain

z— (et b))t =F @)

Since here U, and Ay vary simultaneously with density p, the profile of these
waves becomes deformed in time,

Let us now consider the entropy wave which does not propagate relative to the med-
jum. For the corresponding components of the right-hand vector in this wave we have
r7 == (BZ / B‘ll) ra.

Thus such wave is ajso plane-polarized, and it is possible to select a system of
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coordinates such that B,=0. Using formula (9) of [3] it is possible to write the
differential equation of the simple entropy wave in the form

K'g% = — [KymB (u® + nuBy*/ B) + K20%u, (u* -+~ ugB)mB,?]  (2.6)
dB
K -‘&Fy- = !.lmeB-y [KIMTTS — K, (ps + ‘l’TT.g)]

v, = const, v, =const, v.=-const, B,=0
K= (ps + ‘pTTs) (P‘z -+ PHsz ! B) mB.+ pzup.u'TTs (Mz + MHB) m*B,?
K; = po+ %o + V17,

H
1
Ky=po+purle, == H@—1—pu)dH
0

Thus for the entropy wave in a magnetizable medium not only variation of entropy
is characteristic, as in the case of nonmagnetic medium, but also variation of density,
induction, and temperature,

3, One-dimensional motions of a magnetizable incompressible (p = const)
flnid are defined by five magnetohydrodynamic variables
u=7T, uy=vy, us=v, u =258, u;,=2h,
In the absence of a field the equation of state of the fluid is taken as 7' = T (s)
4],
“ Five types of simple waves exist in an incompressible conducting magnetizable
fluid, Their phase velocities are determined by the equation

A — 42 (A — G) = 0

A2
G = m[ﬂ + u on(Bz-i-Bz)]

For the Alfvén wave A = 4+ A, = + B, /] 4npp and the corresponding

right-hand eigen vector is
r = (0,AB;, — AB,, — B,B,, B.B,)

The differential equations of a simple Alfvén wave in an incompressible fluid are
the same as Eqs, (2. 1) for an incompressible medium,

A simple magnetohydrodynamic transverse wave propagates relative to the fluid
at phase velocity A = 4 G,, to which corresponds the right-hand eigen-vector
with components r, = Nupp TomB, (By+B:), To=AB,, r3=A4B,
rg = — B,B,and ry; = — B,B,, Thus this wave, unlike the Alfvén wave is
plane-polarized. Moreover in it ¥, — v, B,/ B, = const. Hence it is possible
toset v, =0 and B, = (,

The differential equations of the transverse magnetohydrodynamic wave is of the
form

dv,/dB, = — A | By, 4T [dB, = — NpurTmB,

This system of equations was previously obtained in [5] for a conducting fluid mag-
netized to saturation. It reduces to quadratics for an arbitrary magnetization law of
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the form p = u (H).
Finally, in a simple entropy wave A == ( and the corresponding right-hand
eigenvector
r= (W +uuBs*/ B, 0,0, pprBy, purB,)

This shows that this wave is also plane-polarized. Its equation can be written as

dT |dBy = (u? 4 uaB<®/ B)/ (wurBy), vy = const
v, = const, B,=

4, The above analysis shows that the deformation of simple wave profiles in a
compressible medium can only induce the same kind of strong discontinuities asin non-
magpetic medium,

Let us consider the types of possible solutions for conditions at strong discontinuities,
taking first the conducting magnetizable medinm. The following system of equations
defining strong discontinuities in such medium was obtained in [6).

{pUn) = 0, {PUpve — “’HnHt> =0 (4.
{pvs® + p — phup — (4n)" pH, 2> = 0
ovn(V?/2+ W —u — pup + Tur) +

(4n) (vopl® — pH, (VH))) =0

CHHpY =0, PH, (Vo) = (vpple), <He) = -{‘clli x 0]
H
- du Ou

u = (4np) 1§u(p,T,H)HdH, up= 3, ur =g
where subscripts  and T denote, respectively, the normal and tangent vector com~
ponents relative to the discontinuity surface, angled brackets denote jumps of quant-
ities in the shock wave, W is the enthalpy of the medium in the absence of a field,
and the remaining notation is conventional,

System (4. 1) generally admists the following types of discontinuities:

1°, Discontimities without flow of matter through the surface (pv, = m, = 0},

1) contact discontinuities for which B, <=0,

2) trangential discontinuities (B, = 0).

2%, Discontinuities with flow of matter through the surface (m, 3= 0) ,

1) nonpolarized discontimiities with thermodynamic parameters and the tangential
components of magnetic induction and velocity vectors varying (as to magnitude and
direction) when passing through these,

2) rotational discontinuities along which the magnetic induction is continuous, and
the induction vector and, generally, thermodynamic variabies vary,

3) plane-polarized shock waves at passage through which thermodynamic variables
become discontinuous, tangential components of magnetic induction and vejocity vec-
tors e in one plane and vary in magnitude,

Discontinuities without flow of matter were analyzed in detail in [6].

Let us consider discontinuities with flow of matter through the surface. In thiscase
system (4. 1) may be written in the form
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B2

{plo T) — o' + % (mn2 - p@i >> =0 @
mnz wH 2 pB'n2

<W(p,T)+TuT —u—poup + e + 4,-;:, (1— 8npm, 2 )> =0

<Bn> = 0, <mn> = 01 <an'l-' - vnB‘r> =0

When B, = 0 it is possible to select the coardinate system so that on both sid-
es of the discontinuity

)
v":-B;.BT
n

From the last of formulas (4, 2) we then obtain

< uff (mn’ _ s;if )> -0 (4.9)

The first two of relations (4, 2) together with (4, 3) make it, thus, possible to obt-
ain P, Ty, and H, as functions of p,, T, and H,; with constants m, and B,.

Since in nonpolarized jumps vectors B,; and B,, are neither parallel nor equal
and P1 7 Ps, hence, as implied by (4,3), we have

_ B2 - (4.4)
Upi = 4’“’#1 (1' = 1, 2)

and, consequently, the velocity of the medium is the same on both sides of discontin-
uity and equal to the Alfvén velocity, For the calculation of such discontinuities from
(4.2) and (4. 3) we have
<%> =0, <p—piud=0 (4.5)
(W —u —pup + Tur + pH:*/ (8rnp)) =0

Such waves do not exist in nonmagnetic medium, since for p = 1 from (4. 5)
we have

> =0, <py=— g CHD, Wy =—g=CH

which is only possible when (p> = (p> = (W) = 0 and, consequently suchwave
becomes an Alfvén discontinuity.

For rotational jumps (vectors B, and B,, are of equal magnitude but not parall-
eland P; = 0;) from (4. 2) we have the relations (4, 4) and (4, 5) with the addition-
al condition (B.;> = 0.

A particular case of rotational discontinunities is that of Alfvén discontinuities (vec-
tors B and B;, are of equal magnitude but not parallel and p; = p,) for
which from (4.4) and (4. 5) we obtain

vmz = v'n22 = an/(lmpll)’ <P«> = <H> =0
If then U is a single-valued function of temperature, which is usually always
assumed, also Ty = {(pD> = <W) = (.
It will be seen that when p = p (H) and p is a single-valued function of the
magnetic function (u% -+ pyB == 0), then from condition (B> = 0 * for rotational
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waves we obtain {u) = 0. It then follows from (4.5) that in such magnetizable
medium rotational discontinuities other than the Alfvén ones are impossible,

Numerical analysis of system (4. 5) shows that for a perfect gas magnetizable in
conformity with the Klausius — Mosotti law ((p — 1) T'/ (pp) = const) in the
region of magnetic permeability 1 <C u << 2 up to the discontinuity and for the
adiabatic exponent 1 <<y << 2 (y = ¢,/ ¢,) at stable, in the meaning of [3], states
of the medium, only Alfvén discontinuities are possible among rotational and nonpol-
arized discontinuities at which entropy does not decrease.

It can besimilarly shown that in a perfect gas magnetized to saturation and const-
ant magnetization M = (p — 1) H / (4n) = const there exist solutions which
correspond to nonpolarized discontinuities and satisfy the condition of entropy increase,
However these solutions are nonevolutionary,

Since for the arbitrary magnetization law pu = p (p, T, H) the addition of con~
dition {By) = 0 to system (4, 5) reduces the number of variables that are to be de-
termined, that condition imposes additional links on parameters m,, and B? = B.?

+ B.’. Hence a rotational discoatinuity with a jump of thermodynamic variables
can only exist at specific values of the fleld. This, apparently, indicates that among
rotational and nonpolarized discontinuities only Alfvén ones can be realized.

The question of existence of nonpolarized discontinuities that satisfy the conditions
of entropy increase, and of medium stability and evolution in the case of arbitrary eq~
uations of state and magnetization laws remains open,

The plane-polarized jumps represent the most general case, The complete system
(4.2), {4.3) is used for their calculation. The equation of shock adiabat may be used
in the case of magnetizable media [6].

The system of conditions at strong discontinuities in an incompressible magnetizab-
le conducting fluid admits the same types of discontinuities; rotational discontinuities
can only be of the Alfvén type, When a conducting fluid magnetizes in conformity
with the law u = p (H), then only Alfvén and plane-polarized discontinuities are
possible in it,

Note that because magneto-sonic simple waves are plane-polarized and in a simp-
le Alfvén wave hydrodynamic parameters do not vary, the intensity of nonpolarized
shock waves can only be finite [8], Such discontinuities may occur, for instance, und-
er interaction of other types of discontinuities (*).

5, There are seven types of simple waves in a nonconducting magnetizable med-
ium [9] which are plane-polarized. Hence ouly plane-polarized shock waves are poss-
ible in a nonconducting magnetizable medium, For their determination we have
the system of equations

(M =0, (mplfp + p — olup — (40)™ pH,?) = 0
<ma?1(20%) +W —u —pup 4+ Tur) =0
(V) = 0, <H‘t> =0, <Bn> =0

(5.1)

*) Strong discontinuities were also considered in the paper by V. V. Gogmov, N, L.
Vasil'eva, N. G, Taktarov, and G, A. Shaposhnikov, Equations of hydrodynamics of
polarizable and magnetizable multicomponent and multiphase media. Discontinuous
solutions, Investigation of discontimious solutions with a jump of magnetic permeabil-
ity. Otchet Inst. Mekhaniki MGU, No, 1705, 1975,
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Theorem, Shock waves in a nonconducting medium that magnetizes in con-
formity with the law M = M (H) degenerate in gasdynamic waves when conditions
dM/dH >0 and &*M /dH*<C O (p>1) or dM /| dH << 0 and &*M /
dH? > 0 (u < 1) are satisfied,
These conditions for the law of magnetization are inherent to all known media.
This law shows that in paramagnetic and diamagnetic materials the following inequal-
ities are satisfied:

0>ur>-ZE  @>1), o<Km<iZE @<y 6.9
When u = p (H) from (5,1) we obtain
My = 0, mn2<1 /(2p2)> + <W> =0 (5.3)
H

2
P> +mat 0y = o — i \ WD HAH> =Q, (B =0, (H)=0
0

To prove the theorem we take into account that the law of magnetization p =
w (H) = p (VY H? + B,/ u?) by virtue of the last three of conditions (5.3) is an
implicit equation in W with parameters Hy and B, , whose condition of solvabil-
ityis 1+ paBp?/ (¥ H) 0. In the class of positive functions of p, when con-
dition (5. 2) is satisfied, it applies to paramagmetic as well as to diamagnetic materi-
als, Hence from conditions (5,3) we have {u> = 0 <(H? = B2l /pu® =0,
and Q = 0.

Thus (5, 3) reduce to gasdynamic conditions and to conditions for a field which
does not interact with the medium, Since in the case of media in which magnetizat-
ion is independent of temperature and the adiabat <{s + s*) = 0 is the same as in
gasdynamics ({s) = 0), solutions at shock waves (5. 3) coincide with those in gas-
dynamics,
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